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4-(Pyrrolidin-1-yl)pyridine-catalyzed deconjugative esteri-
fication of 2-cyclohexylideneacetic acids afforded isopropyl 2-
(cyclohex-1-enyl)acetate by employing 1-ethyl-3-(3-dimethyl-
aminopropyl)carbodiimide hydrochloride as a coupling reagent.
On the other hand, 4-(pyrrolidin-1-yl)pyridine-catalyzed esterifi-
cation with 1,3-dicyclohexylcarbodiimide was not accompanied
by deconjugation and gave isopropyl 2-cyclohexylideneacetate.

�,�-Unsaturated esters are of interest as synthetic building
blocks in organic chemistry and medicinal chemistry. There
are numerous deconjugative reactions of �,�-unsaturated esters,
such as photochemical deconjugation,1 alkylative deconjuga-
tion,2 and anionic deconjugation.3 However, conventional ester-
ification of carboxylic acids with alcohols utilizing carbodiimide
reagents has received little attention as a deconjugative
reaction.4 Here, we describe the 4-(pyrrolidin-1-yl)pyridine
(PPY)5-catalyzed deconjugative esterification of 2-cyclohexyli-
deneacetic acids 1–3 achieved by employing 1-ethyl-3-(3-di-
methylaminopropyl)carbodiimide hydrochloride (EDC.HCl)6
as a coupling reagent.

We have found that an esterification of 2-(4-phenylcyclo-
hexylidene)acetic acid (1) and i-PrOH through PPY-catalyzed
EDC.HCl coupling in CH2Cl2 at room temperature afforded
�,�-unsaturated ester 4a with a 4a:5a ratio of 96:4, and in
74% yield (Table 1, Entry 1).7 The tendency toward deconjuga-
tion in the esterification seemed to depend on the bulkiness of
alcohols. The esterification of carboxylic acid 1 with MeOH
and EtOH resulted in a low regioselectivity (4:5 = 62:38)
(Table 1, Entries 2 and 3). In the reaction with t-BuOH, the
regioselective esterification suffered from low yield (Table 1,
Entry 4). Under similar conditions, carboxylic acids 2 and 3
afforded �,�-unsaturated esters 4e and 4f with high regioselec-
tivities (Table 1, Entries 5 and 6). On the other hand, when 1,3-
dicyclohexylcarbodiimide (DCC)8 or EDC was used instead of
EDC.HCl, �,�-unsaturated ester 5a was obtained as the major
product (4a:5a = 12:88 or 24:76) (Table 1, Entries 7 and 8).
This suggested the significance of a tertiary amine hydrochloride
moiety of EDC.HCl for deconjugative esterification. Hence, tri-
methylamine hydrochloride was added to the PPY-catalyzed re-
action utilizing DCC as a coupling reagent to alter the regiose-
lectivity. The major product of this was �,�-unsaturated ester
4a (4a:5a = 93:7) (Table 1, Entry 9). Ordinary PPY-catalyzed
esterification of carboxylic acids 1–3 and i-PrOH with DCC,
which was not accompanied by deconjugation, were carried
out within a range of 4:5 ratios of 11:89–4:96 (Table 1, Entries
10–12). The 4:5 ratios were determined by 1HNMR analysis
(400MHz, C6D6).

Next, we attempted amidation of carboxylic acid 1 with
several amines under conditions similar to those of deconjuga-

tive esterification. The amidation of carboxylic acid 1 with
BnNH2 and PhNH2 afforded �,�-unsaturated amides 6a and
6b with modest regioselectivity (Table 2, Entries 1 and 2). On
the other hand, treatment of 1 and 4-nitroaniline (4-NO2C6H4-
NH2) with PPY and EDC.HCl in CH2Cl2 at room temperature
afforded �,�-unsaturated amide 6c as the sole product
(Table 2, Entry 3). The regioselectivity in the amidation of
carboxylic acid 1 seemed to vary depending on the pKaH value
of each amine (BnNH2: 9.34, PhNH2: 4.87, 4-NO2C6H4NH2:
1.02).9 The amidation of 1 and BnNH2 or PhNH2 without
employing PPY afforded �,�-unsaturated amides 7a and 7b,
though in low yields. It is worth noting that these reactions
were not accompanied by any deconjugation (Table 2, Entries
4 and 5).

In conclusion, we demonstrated a novel deconjugative
esterification of 2-cyclohexylideneacetic acids 1–3 catalyzed
by PPY employing EDC.HCl as a coupling reagent. Although
the mechanism underlying this reaction is not clear at this stage,
the reaction probably involves the equilibrium between the
active PPY-intermediates, �,�-unsaturated acyl pyridinium
and �,�-unsaturated acyl pyridinium, as shown in Scheme 1.

Table 1. Deconjugative esterification of 2-cyclohexylideneace-
tic acids 1–3

R1

CO2H

R1

CO2R2

R1

CO2R2

Conditions

1−3

+

β ,γ -Unsaturated esters 4 α,β-Unsaturated esters 5

CH2Cl2
1 h

CH2Cl2
 rt, 4−6 h

R2OH
(5 mol equiv.)

Entry R1 R2 Conditionsa Yield/%b 4:5c

1 Ph i-Pr A 74 96:4 (4a:5a)
2 Ph Me A 83 62:38 (4b:5b)
3 Ph Et A 73 62:38 (4c:5c)
4 Ph t-Bu A 5 97:3 (4d:5d)
5 Me i-Pr A 79 92:8 (4e:5e)
6 t-Bu i-Pr A 79 93:7 (4f:5f)
7 Ph i-Pr B 59 12:88 (4a:5a)
8 Ph i-Pr C 36 24:76 (4a:5a)
9 Ph i-Pr Bd 53 93:7 (4a:5a)
10 Ph i-Pr D 79 4:96 (4a:5a)
11 Me i-Pr D 70 11:89 (4e:5e)
12 t-Bu i-Pr D 79 7:93 (4f:5f)

aA: rt, 1–3/PPY/EDC.HCl (1:0.3:1.5), B: rt, 1/PPY/DCC
(1:0.3:1.5), C: rt, 1/PPY/EDC (1:0.3:1.5), D: 0 �C, 1–3/
PPY/DCC (1:1.5:1.5). bIsolated yields. cDetermined by
1HNMR analysis of the crude esters. dTrimethylamine hy-
drochloride (1.5mol equiv.) was added.
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The counter anion (X�) seems to have a significant influence on
the reactivity of these acyl pyridiniums. For reference’s sake, it
should be noted that Dai et al. reported that �,�-unsaturated es-
ter 4c was thermodynamically more stable than �,�-unsaturated
ester 5c.10 We are currently investigating the mechanism under-
lying and the extension of this intriguing deconjugative esterifi-
cation.
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Scheme 1. Proposed migration of the double bond in acyl
pyridinium intermediates.

Table 2. Deconjugative amidation of 2-cyclohexylideneacetic
acid 1

Ph

CO2H

Ph

CONHR

Ph

CONHR

Conditions

1

+

β,γ -Unsaturated amides 6 α,β -Unsaturated amides 7

CH2Cl2
r.t., 1 h

CH2Cl2
r.t., Time

RNH2
(1 mol equiv.)

Entry R Conditionsa Time/h Yield/%b 6:7c

1 Bn A 6 71 36:64
(6a:7a)

2 Ph A 6 81 55:45
(6b:7b)

3 4-NO2C6H4 A 21 45 100:0
(6c:7c)

4 Bn B 6 18 0:100
(6a:7a)

5 Ph B 24 10 0:100
(6b:7b)

6 4-NO2C6H4 B 24 0d —
aA: 1/PPY/EDC.HCl (1:0.3:1.5), B: 1/EDC.HCl (1:1.5).
bIsolated yields. cDetermined by 1HNMR analysis of the crude
amides. dNo reaction.
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